直线电机不仅从结构上是从旋转电机演变 而来的,其工作原理也与旋转电机相似,遵 循电机学的一些基本电磁原理。这里直流永 磁直线电机为例子,说明一下直线电机的基本工作原理。
VLP0020-0160是一款音圈电机,和直线 电机在某种程度上是一致的。区别在于,音 圈电机只有一个线圈,磁极一般不超过2对, 只被要求在一对磁极的范围里运动,也就不 需要换相了。当需要突破这种行程限制,就 必需要有更多的磁极,和更多的线圈来接力, 这就是直线电机。所以音圈电机也叫做无换 向直线电机。)
下图表示的是典型的平板直线电机的结构。图中的灰色的部分是底板, 黄色的方块为一块块的永磁体,黄色和灰色部分组成了直线电机的定子。相 邻两个永磁体的极性是相反的,所以磁力线的分布如图中所示。黄色的点表 示次级线圈中导线的横截面。
可以看到导线的方向基本垂直于磁力线的方向,当导线中通过电流时, 会产生安培力。由左手定则可以得知,根据导线中电流方向的不同,可以使 线圈产生向左或者向右的力。这个力就是使直线电机直接做直线运动的推力直线电机的工作原理。
直线电机绝大部分为直流永磁同步直线电机。其他种类 的直线电机,如交流永磁同步直线电机、交流感应直线电机、步进直线电机。这些电机工作的基本原理都是类似的。
位于磁场中的载流导体,该导体受到力的作用,力的方向可按左手定则确定。力的大小由下面公式确定:
绕组形式:
交叉覆盖方式,三个线圈组合占一个极 距,空间利用率高,动子较短。线圈无 效的两边可排列在磁场外,可以增加散热效果。
非覆盖平铺方式,三个线圈占2个极距, 一般用于大推力电机,线圈的成型工艺 简单,但线圈中央必须留空,磁场利用率较低。
对于带铁芯直线电机通常需要采用消齿槽的工艺,斜槽一个方法,还有就是采用分数 槽,错开磁极和铁芯的整倍数关系。
直线电机的工作原理是一种将电能直接转换成直线运动机械能,而不需要任何中间转换机构的传动装置。它可以看成是一台旋转电机按径向剖开,并展成平面而成,如图1所示。
由定子演变而来的一侧称为初级,由转子演变而来的一侧称为次级。在实际应用时,将初级和次级制造成不同的长度,以保证在所需行程范围内初级与次级之间的耦合保持不变。直线电机可以是短初级长次级,也可以是长初级短次级。考虑到制造成本、运行费用,目前一般均采用短初级长次级。
直线电动机的工作原理与旋转电动机相似。以直线感应电动机为例:当初级绕组通入交流电源时,便在气隙中产生行波磁场,次级在行波磁场切割下,将感应出电动势并产生电流,该电流与气隙中的磁场相作用就产生电磁推力。如果初级固定,则次级在推力作用下做直线运动;反之,则初级做直线运动。
图1直线电机的转变过程
直线电机的选型
直线电机选型的重要性
直线电机系统的结构与旋转电机系统的结构有所不同。旋转电机往往通过丝杠、皮带轮等转 动部件转化为直线运动。而直线电机采用直接驱动技术,直线电机的性能起到了决定性的作用。直线电机用户往往对负载的运动有一系列的要求。这样就需要我们为客户选择一款合适的电机。如果选择不当,则可能达不到客户的要求,或者给客户造成成本不必要的上涨。并不是所有的传 统传动机构都能被直线电机替代,如果工作状态不能发挥直线电机的高速性能,这种替代可能是 不合理的。
传统的旋转电机可以通过减速机构保证功率的正常发挥,而直线电机系统的持续推力和最大推 力是有限制的,且却不能通过减速等方式产生更大的力。所以当速度很低时,力也不能变大,所 以正常的功率不能被发挥出来。
另外对于成本问题,直线电机的前期成本虽然高于丝杆,但对于高精度的应用时,高等级的丝 杆的采购成本也会比较高,并且此时丝杆系统也需要考虑安装线性编码器,这样直线电机和丝杆 之间的成本差距就会变得很小;并且丝杆传动的平台还存在着使用中的维护和磨损问题,由此带 来的人工成本和维护成本也不容小视,最后,随着直线电机的生产技术的提高以及量产化的不断 扩大,其采购成本也在不断降低。
根据客户的要求选择电机
直线电机的使用目前还没有旋转电机广泛,了解直线电机的用户还不是很多。用 户在想使用直线电机时,没有自行选择直线电机的能力。这样就需要我们根据用户的 要求来帮用户选择。
由于用户没有选择的能力,所以用户只会提供他们的要求。根据直线电机应用场 合,这些要求往往是:行程、加速度、最高速度等。实际上,我们的客户都不会给我 们这些数据。因为这些数据时需要计算出来的,用户往往不会去计算,或者计算出来 的数据并不准确。这时候就需要我们想客户了解,直线电机需要带动什么样的负载, 这个负载要做什么样的运动。