图1 五轴联动高速加工中心机床示例
- 生产效率高,材料去除率是常规切削加工机床的3~6倍,从而可大大缩短零件的加工时间和制造周期;
- 切削力比常规速度时少30%~50%和约30%以上的切削热将被切屑所带走,所以工件温升和变形少,有利于进行薄壁件切削和提高加工精度;
- 由于切削速度高,切削过程中产生的强迫振动频率一般远离了机床工艺系统的固有频率,故切削过程更平稳,有利于提高加工表面质量和刀具寿命,免掉许多费时费工的人工顺序作业;
- 许多机电产品所用的零部件,无论是单件或批量需求的,都可在相应的高速加工机床(如多轴联动的高速加工中心和车铣中心)上进行多工序复合加工甚至一次装夹实现全部加工。
图2 人造花岗岩整体浇注的床身结构
高速加工对机床结构的基本要求和设计原则
- 为了提高结构的静刚度,首先是选择弹性模量大的材料,如钢、铸铁等作为结构件的基本材料;其次是根据受力的性质(拉,压或扭)和条件(力的大小,方向和作用点)选择合理的结构截面形状、尺寸、筋壁布置和机床的总体布局;三是结构件间的接合面要平整,面积大小要适当,接触点在接合面上的分布要均匀,连接要牢固等;四是尽量采用箱形和整体型结构。
- 为了提高结构的动刚度,首先是在保证静刚度的前提下,选择阻尼系数大的材料,如人造花岗岩,铸铁等作为基础结构件的材料;二是通过模型试验或模态分析合理设计和调整结构的质量分布和结构接合面的刚度值,以改变结构系统本身的固有振动频率,使其远离切削过程中所产生的强迫振动频率,避免产生共振的可能性;三是有意采用能增加附加阻尼的结构设计,如带夹芯的双层壁铸件和非连续焊接的焊件等;四是直线运动部件的支承导轨面间距离要尽可能宽阔,驱动力的作用线要居中并尽可能靠近运动部件的重心,传动链中应无反向间隙,以保证运动平稳,无冲击。
- 为了提高结构的热刚度,原则上首先应采用热容量大、热胀系数小的材料和热胀系数相近的材料作为结构材料;其次是根据机床上的热源和温度场的分布情况,尽量采用热对称和方便散热或强迫冷却的结构,包括采用热补偿措施的结构等,以减少热变形带来的对机床几何精度和工作性能的影响。
- 为了减少运动部件的重量和传动系统的惯量,一是选用比重小的材料,如铝合金和复合材料等,作为运动部件的结构材料;二是在保证刚度和承载能力的前提下,尽量去除多馀的材料;三是采用直接传动,简化传动系统,缩短传动链,以提高机床的运动品质。
图3 现代刀具加工不同工件材料时可选用的切削速度和进给率范围
图4 不同刀具直径和不同切速下所要求的刀具/主轴转速
高速电主轴单元
高速进给系统
- 进给运动的传动方式
- 高速进给运动的传动方式,目前广为应用的主要有两种:一种是回转伺服电机通过滚珠丝杠的间接传动,另一种是采用直线电机直接驱动。
- 通过滚珠丝杠间接传动方式的优点是技术成熟,结构相对简单,加速度特性受运动部件载荷变化的影响较小,且目前已有许多国内外厂家进行标准化,系列化和模块化的专业化生产。但是普通传动用的滚珠丝杠,由于存在惯量大,导程小,又受到临界转速的限制等,其所能提供的进给/快移速度只有10~20m/min,加速度为0.3g,满足不了高速加工的要求,因此,高速加工用的进给滚珠丝杠普遍采取如下的改进措施。
- 加大丝杠的导程和增加螺纹的头数,前者为提高丝杠每转的进给量(即进给速度),后者则为弥补丝杠导程增大后所带来的轴向刚度和承载能力的下降。
- 将实心丝杠改为空心的,这既是为减少丝杠的重量和惯量,也是为便于对丝杠采取通水内冷,以利于提高丝杠转速,提高进给/快移速度和加速的能力,减少热影响;
- 改进回珠器和滚道的设计制造质量,使滚珠的循环更流畅,摩擦损耗更少;
- 采用滚珠丝杠固定,螺母与联结在移动部件上的伺服电机集成在一起完成旋转和移动,从而避开了丝杠受临界转速的限制等。
- 经过采取这些改进措施后,滚珠丝杠传动的进给方式可提供的进给/快移速度达60m/min~90m/min,加速度可达1~2g。但是由于受到原理结构的限制,要想进一步提高滚珠丝杠传动的运动速度和加速度很难了,而且受丝杠的可制造长度限制,滚珠丝杠传动所能提供的运动行程也是有限的。
- 与上述的通过滚珠丝杠间接传动的方式相比,采用直线电机直接驱动的主要特点和优点是将伺服电机的定子和动子分别直接与机床床身及移动部结合在一起,没有了中间环节,传动链的长度缩短为零,即实现了所谓的“零传动”,从而大大提高了机械刚度,减少了传动系统的惯量,获得更高的速度和加速度能力,并易于控制系统的阻尼力和动态特性,直线电机最高的进给/快速度可达120m/min乃至240m/min,加速度可达2~10g;行程长度可不受限制;适应性强,灵敏度高,随动性好,不存在反向间隙,可利用直线光栅尺作为测量反馈元件,实现全闭环控制,以获得更高的定位精度和跟踪精度等。
- 但是,直线电机直接驱动也存在一些缺点:如效率低,功耗大,结构尺寸和自重也相对较大;工作过程温升高,要求强冷却;因受磁场力影响易于吸引铁屑和金属物,故需考虑防磁措施等,特别是要注意的是它的加速度值直接反比于运动部件的载荷量(工作台/滑座自重加上工件及其他外载荷),即对运动载荷较敏感,故宜用于运动件载荷恒定或变化量不大的场合,在载荷变化重大的情况下,必需能在数控编程时予以考虑,否则不能保证加工所要求的效率和质量。另外,直线电机直接驱动不具自锁能力,设计和使用中应注意考虑外加制动措施,特别是在垂直轴进给系统中使用时,尤要注意。
- 各轴进给运动的相互结构联系
- 如同一般加工机床一样,高速加工机床一般都有2个以上,多至5个进给运动轴,这些运动轴间的相互结构联系,目前存在着串联,并联和混联三种型式。
- 串联结构是传统机床普遍采用的型式,其特点是各运动轴的布局采用笛卡尔直角坐标系,机床床身、立柱、溜板、工作台/转台和主轴箱等部件分别通过相应的导轨支承面串联在一起的,各轴运动均可单独地独立进行,由于是串联,各运动部件的重量往往都较大,且不一致,需特殊调整方可保持各轴加速度特性的一致性;进给系统的结构件不仅受拉、压力,而且受弯、扭力矩的作用,变形复杂,后运动部件受到先运动部件的牵动和加速,加工误差由各轴运动误差线性迭加而成,且受导轨精度的影响等,这些都是串联结构的缺点。然而由于串联结构较传统,有长期设计、制造和应用的经验,技术较成熟,故迄今仍为大多数高速加工机床所采用。但串联结构中还有着不同的各运动轴的相互组合配置方式,其所获得的应用效果是不一样的,设计时应以高速加工的特点及其对机床结构设计的要求出发来确定。
图5 Stewart平台式并联结构机床- 并联结构的典型代表是Stewart平台式的所谓虚拟轴机床(图5)。它的特点是运动部件是一个由伺服电机分别控制的6根可自由伸缩的杆子所支承的动平台,该平台可同时作6个自由度的运动,但没有像串联结构那样的物理上固定的X、Y、Z轴和相应的运动支承导轨,而且任何一轴运动都必须由6根可伸缩杆的协同运动来完成。一般刀具/主轴头就安装在该动平台上,工件则固定在机床的机架上,此外就不再有溜板、导轨等支承件了。与传统串联结构的机床相比,并联结构型式的机床主要有如下优点:
- 运动部件重量轻,惯量小,更有利于实现进给运动高的速度和加速度;
- 刀具主轴头可同时实现5轴联动,结构简单,且主要的6根伸缩杆具有相同的结构和驱动方式,便于模块化,标准化和系列化生产;
- 伸缩杆的两端分别由球铰和虎克铰链与相关件连结,使杆子只受拉、压力,不受弯扭力作用,刚度高,并易于通过预加载荷来提高整个进给系统的综合刚度。
- 理论精度高,因为它不像串联结构那样,各轴运动误差有可能被累积和放大,故并联结构的进给运动的综合误差一般不会大于6根伸缩杆运动误差的平均值。
- 并联结构的缺点是:
- 在同一台机床上,其进给的行程随着各伸缩杆的伸出长度和动平台的位姿角变化而变化,故由行程所决定的可加工空间是非规则形,不方便应用;
- 因受球铰和虎克铰转角的限制,带主轴头的动平台所能倾斜的角度较小(一般只有±40°)从而影响了机床的可加工范围;
- 运动编程较复杂,而且在任一轴向上的简单直线运动,也要有6根杆的协调伸缩运动才能完成等。
- 由于有这些问题的存在,并联结构的应用,目前尚不十分广泛,还有待于进一步研究和发展。
图6 混联结构机床示意图- 数控、伺服控制系统
- 数控、伺服控制系统是保证实现高速加工的核心技术装置,对它的要求是:既能实现所需的高进给速度和加减速度的控制,又要保证所需的轨迹跟踪精度和加工质量。因此,数控伺服系统首先应具有很高的运算速度(即更短的单个程序段的处理时间)和数据存贮及传输的能力,以处理大量的插补和控制数据;二是强大的前瞻功能,以保持最佳的进给速度和加速度,最佳的路径变换,识别拐角,及时调整,保证规定的动态精度曲线,使加工速度不超过机床的运行特性范围;三是有效的速度、加速度稳定功能和自适应加工轮廓变化的能力,因为加工平滑轮廓和非平滑轮廓时,施加在机床驱动系统上的力量不一样的,因此系统必需具有自调节能力,以保证机床永不过载,又能保持最佳的加工效率和质量,四是系统要力求具有开放性,包括人机界面开放(即具有标准的软硬件平台,如PC硬件,Windows操作系统,人机界面开发工具等)、控制逻辑开放(即具有可编程的机床逻辑控制,网络功能等)和数控内核开放(如供几何坐标系统与数控轴直连的接口等),以使机床生产厂和用户可以集成自己的人机界面,设计高效、高可靠性的控制逻辑和专有的坐标变换及补偿控制软件等;五是系统应有足够的(如0.1µm)分辨率和多轴联动控制的功能,以保证高精、高速、高效加工的实现。目前德国西门子公司生产的Sinumerik 840D和日本FANUC公司生产的FS16i/18i/21i MODEL B等系统,都是具有一定开放性的系统,能基本满足上述功能要求。
- 高速进给运动的传动方式,目前广为应用的主要有两种:一种是回转伺服电机通过滚珠丝杠的间接传动,另一种是采用直线电机直接驱动。
图7 HSK中空短锥刀柄
高速加工刀具
- 锥面和端面同时接触定位,刀柄薄壁锥体会随高速时主轴锥孔的“胀大”而“胀大”,两者中间不会出现间隙,保证了轴向精度和刚度;
- 刀具拉杆爪在刀柄内打开,夹紧力将随着机床主轴转速的升高而加大,提高了装夹的安全与可靠性;
- 中空短锥刀柄减少了刀柄的重量和惯量,有利于主轴的速度和加速度性能的提高等。
高速加工工艺的制订和编程策略
- 加工余量的清除,一般宜用系列刀具分别进行粗加工,半精加工和精加工的分段处理,不应企图用单一小刀具一次完成加工;
- 采用工序集中的原则和合理的工件装夹位置和方式,力求一次装夹定位完成工件的全部加工;
- 高速铣削加工中尽量采用顺铣削,因为顺铣时刀具切入工件的切屑厚度是由最大而後逐渐变薄,切刃受力状态好,产生的热量比逆铣时少,有利於延长刀具的使用寿命。
- 要保持金属去除率恒定,在此条件下,宜用高切速,小切深(背切深度ae不宜大于0.2mm)进行加工,以保证切削载荷的恒定,获得较好的切削热转移和加工质量。
- 要尽可能不中断切削过程和刀具路径;减少刀具切入切出工件的次数;尽量避免刀具的急剧转向;在进退刀和从一个切削层进入另一切削层时,应采用螺旋线,圆弧或斜线进出工件,以获得相对平稳的切削过程。
- 加工凹凸角时应采用圆弧速度补偿选项,调节刀具在拐角处的进给速度,但切刃的切削速度仍保持恒定,以获得光滑的表面。
- 在生成加工程序前应对刀具路径进行优化,合并或取消那些零碎的、短的刀位轨迹,合理安排切削区域的加工顺序,减少进退刀次数和空刀移动的距离等,在保证加工精度要求的前提下,尽量减少程序段数。
- 由于制订高速加工工艺和确定编程策略时,有许多问题和细节要考虑,为此,一些国际有名的软件开发商,如英国的Delcam公司,以色列的Cimatron公司等,业已推出不少适用于高速加工用的,具有不同工艺特点和编程策略的通用和专用的CAM编程软件,如Delcam公司的PowerMILL数控编程软件,它是独立运行的CAM软件,具有高效区域加工策略、赛车线加工、摆线加工,自动摆线加工,残留粗加工、高速精加工、变馀量加工和侧刃(SWARF)加工等的高速加工工艺策略,还支持5轴高速加工方法,包括曲面投影加工、驱动曲面加工、铣槽加工、多轴钻孔等,编制高速加工程序时应根据实际需要选择功能适用的CAM软件来进行,并在实施真正的加工前,对生成的高速加工程序进行仿真检验,以发现问题进行进一步修改或修正。
图8 机床切削加工的稳定图
消除切削颤振的策略
排屑和安全防护
善于综合分析与评估,总结经验并创新
- 方案或方法应能满足给定条件下的目标要求,如单件或批量加工时的精度,效率或质量一致性;
- 方案或方法实施起来比较方便可靠,如已有经过实践证明有效的、现成成熟的技术或产品,可以“即插即用”或无需作出大的改动便能用;
- 方案或方法的实施成本(包括研制、开发和应用中的成本费用)较低,且不需要附加(如环保)的资金投入或只需很少的附加投入,无公害;
- 方案或方法便于升级,改造或扩展和集成等。
- 首先要认真研究目前已有的一些具有代表性的高速加工机床所采用的技术方案和结构设计的特点,弄清其设计意图和方案选用的依据,实际应用的效果和不同用户所确认的该机床的优缺点,从而可以吸取别人的经验;
- 要善于对各种可供选用,特别是其中拟自行研发或选用的技术方案和工艺方法,进行综合的分析比较,评估其研发和选用的经济合理性、技术先进性和适用性;
- 要善于不断从实践中总结自己的经验,并在新的实践中加以发展和创新。比如在总结设计和应用经验时,要思考在什么条件和技术目标要求下,自己是如何进行分析、比较和选定了什麽样的技术方案或工艺方法的?结果取得了怎样的实际应用效果?应用效果是否与自己的设计意图相吻合?如不吻合,问题出在哪里?应如何去加以改进和创新?改进或创新後的效果又如何?等等。因为只有这样,我们才有可能逐渐形成自己的Know-How,设计好、应用好高速加工机床,也只有这样,我们才有可能从後进变先进,创造出更多自有知识产权的好产品、好工艺、好软件,永远摆脱目前老是跟在人家後面走的落后局面。